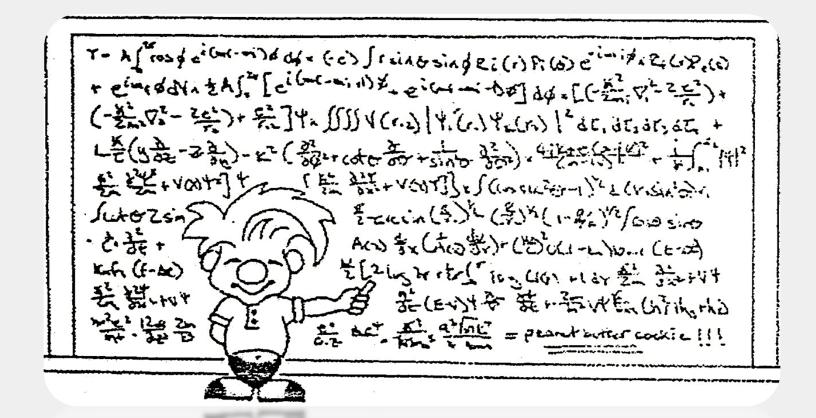
BASS XIX Presentation

Statistical Analysis of Safety Data – A Survey of Some Analysis Methods

Outline

- Introduction
- Scope of Safety Data
- Guidance on the Analysis of Safety Data
- Thoughts on Safety Data
- Thoughts on Safety Analysis
- Analysis Approaches
- Conclusion

Sorry – no equations!

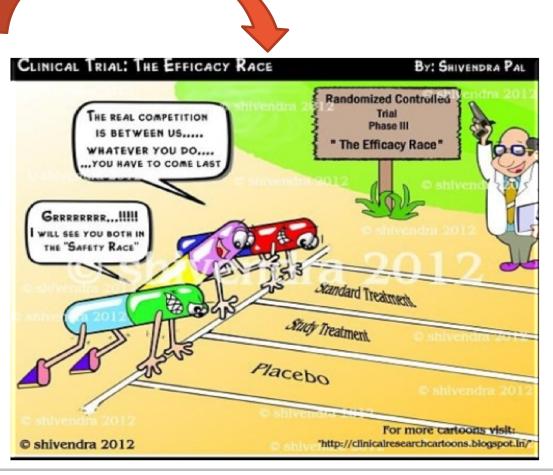


Safety - "a reasonable certainty that a substance is not harmful under the intended conditions of use" - Green

Did My Drug Cause This? a Biostatistical Perspective Mark S. Von Tress, Drug Information Journal October 1992 vol. 26 no. 4 565-572

- Much is written in older and recent literature with a *safety headline or implication or connotation or implication for clinical safety data*
- Questions have been raised regarding completeness and inadequacies in the analysis and reporting of safety data
- General acknowledgement
 - There is room for improvement in the analysis and reporting of safety data from clinical trials
 - Safety data are not assessed appropriately more focus on efficacy and often selective reporting for safety data
 - Insufficient methodological approaches for safety data efficacy is given a more rigorous treatment than safety
 - Currently more scrutiny on safety, both pre- and post approval

Efficacy versus safety race in clinical trials?



Drug Safety Reporting- now and then

David J. Garbutt 2008 PhUSE 2008 Paper RA08

This paper is about the now and then of safety reporting, about its future and where it can, and should, go. safety...is vital to marketing, drug screening, approval, and continued existence on the market

Some Concerns about Adverse Event Reporting in

Randomized Clinical Trials

Yusuf Yazici, M.D.

Bulletin of the NYU Hospital for Joint Diseases 2008;66(2):143-5

Reporting of AEs is often lacking and with limited application in the real world,... It is not surprising that new and unexpected safety concerns emerge with any new drug after it has been launched and used by many more patients.

Rethinking Statistical Approaches to Evaluating Drug Safety

n-pei Liu^{1,2} Yonsei Med I 48(6):895 - 900, 2007

Safety Analysis: Too Much? Not Enough? and How?

Christy Chuang-Stein

Biopharmaceutical Report, Volume 1, No.2, 1992

Challenges and Opportunities to Improve Premarketing Safety Planning, Evaluation and Reporting DIA/FDA/FhRMA Drug Safety Conference Robert T. O'Neill Ph.D. 2008,

What constitutes an appropriate safety analysis for a given trial...are conducting too many comparisons, or is what we are doing (if we know what we are doing) enough? Are we doing the right thing?...

A lot of emphasis on efficacy evaluation of clinical outcomes in individual studies...

Not much on quantification or summarizing safety data... Rigorous ascertainment of safety outcomes is essential

Perspectives of Safety Issues in Drug Development Industry Statistical Perspective

Industry Statistical Perspective
Timothy Costigan, Ph.D Wei Shen, Ph.D
2003 FDA/Industry Statistics Workshop

The current methods used to evaluate the safety of drug products are inadequate.

Objectives of the safety data analysis should be to: Identify and understand safety issues as early as possible. Identify risk factors related to increased toxicity and lack of efficacy.Special safety data should be analyzed and interpreted differently than standard safety data...

Safety, Can You Paradigm? A Statistical Lament Janet Turk Wittes

VII Graybill Conference on Biopharmaceutical Statistic, 2008

SAFETY ANALYSIS IN CONTROLLED CLINICAL TRIALS

CHRISTY CHUANG-STEIN, PHD Drug Information Journal, Vol. 32, pp. 1363S–1372S, 1998

The question that must be considered is whether the analysis that is currently being performed is relevant and whether safety data are being summarized in a way most beneficialin understanding the safety outlook of a new treatment....

The bottom line is that safety analysis, both pre- and post- marketing, needs more statistical input. The time for statisticians to answer this challenge is NOW...

Analysis of Safety Data
Is More Enough?
Marc Andersen 2006

Because we find safety boring...we don't look at preclinical and early Phase data. We don't ask about: Chemistry, Biology, what PK/PD studies show. Safety part of analysis plan is an afterthought

Improve protocol considerations for adverse event recording....Improve the data analysis, event summarization and reporting. Bring adverse event analysis to the level of efficacy evaluation...There remains many amateur, naïve views of safety summarization, event rates, and reporting - these impact risk management

Need a carefully crafted SAP which serves as a coherent framework for sponsors and regulators to characterize safety endpoints

Adverse Events: After 58 Years, Do We Have it Right Yet?

Joel C. Scherer and Curtis G. Wiltse
Biopharmaceutical Report, Volume 4, 1996

Discovering adverse reactions: Why does it take so long?

Raymond L. Woosley, MD, PhD Clinical Pharmacology & Therapeutics, Volume, 76, 2004

Unfortunately, we continue to be shocked by reports of unexpected toxicity associated with some drugs after many years, sometimes after decades, of clinical use

The Analysis of Adverse Drug Reactions in Clinical Trials: A Basis for Communicating and Managing Risk Robert T. O'Neill Ph.D. 2001

Planning for Safety Assessment Throughout the Lifecycle of a Regulated Product 2007 International Biometrics Society George Rochester, Ph.D.

Hiding safety signals: 5 easy lessons

Janet Wittes

MBSW, 2011

CLINICAL TRIAL ADVERSE EVENTS: THE CASE FOR DESCRIPTIVE TECHNIOUES

Drug Information Journal, Vol. 25, pp. 447-456, 1991

WILLIAM J. HUSTER, PhD

Challenges and Opportunities to **Improve Premarketing Safety** Planning, Evaluation and Reporting Robert T. O'Neill Ph.D. 2008.

fe-cycle Planning for Product Safety Evaluation in Support of Benefit-Risk Activities C. George Rochester, M.A., Ph.D., 2009

The Quantitative Safety Analysis Plan

C. George Rochester, M.A., Ph.D., RAC 2009

Methods....time to onset, time-toresolution, dropout and AEs preceding discontinuation, injury repair models, event history, competing risks, risk factor identification - logistic, hazard, or Poisson regression models, time dependent covariates, propensity models, methods for sparse data, information synthesis methodology, multilevel models, methods to handle indirect comparisons

The manner in which safety information is collected implies that formal statistical inference is invalid.

Culture change is needed for prospective planning for safety evaluation that improves our quantification of risk and uncertainty. Safety evaluation is hard...the pre-market process, the post-approval process and the life-cycle perspective all need to be considered

WHY DO WE HISS THE SIDE EFFECTS ? BÉCAUSÉ WE DON'T LOOK FOR THEM.

Emerging Trends in Regulatory Biostatistics -

What might be their impact?

__Robert T. O'Neill Ph.D.

VII Graybill Conference on "Biopharmaceutical Statistics"

Methods...causal analysis, propensity score matching, cumulative meta-analysis, rare events, multiple recurrent event, time-toevent, visual graphics

Pre-Market Safety Must Balance Statistics With Clinical Discernment – FDA

"The Pink Sheet" Nov. 10, 2008, Vol. 70, No. 045

Safety evaluation is probably much harder than efficacy evaluation because in many ways it's reading the tea leaves. It's a lot of multiplicity, a lot of false discovery, a lot of it-it-real or isit-not-real...But nonetheless, you can't even approach that discussion if you can't quantify it in a reasonable way...statisticians for the most part have not been involved in safety evaluations...The sophistication is out, it just has not bee brought to bear on routine safety assessment for chronically used drugs.

Bayesian Applications in Clinical Trial Safety Assessment — Topic Contributed Papers

Biopharmaceutical Section

2012 JSM

Recent Developments of Bayesian Meta-Analysis for Safety Evaluation in Randomized Clinical Trials — Karen Price, Eli Lilly and Company

Identifying Potential Adverse Events Dose-Response Relationships via Bayesian Indirect and Mixed Treatment Comparison Models — Haoda Fu; Karen Price, Eli Lilly and Company; Mary E. Nilsson, Eli Lilly and Company; Stephen J. Ruberg, Eli Lilly and Company

Bayesian Meta Experimental Design: Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes
— H. Xia, Amgen, Inc.; Joseph Ibrahim, The University of North Carolina at Chapel Hill; Ming-Hui Chen, University of Connecticut;
Thomas Liu, Amgen, Inc.

Applications of Bayesian Model Selection for Clinical Safety Data — Bradley McEvoy, FDA/CDER; Rajesh R Nandy, University of California at Los Angeles; Ram C. Tiwari, FDA/CDER/OTS/OB

Discussant: George Rochester, FDA

Using Advanced Visual Analytics to Improve Safety Assessment and Decisionmaking in Drug Development — Invited Papers

Section on Health Policy Statistics, ENAR, Section on Risk Analysis, Scientific and Public Affairs Advisory Committee

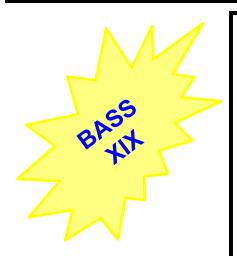
Safety Graphics: Graphical Approaches for Identifying Safety Signals — Janelle Charles, U.S. Food and Drug Administration/OTS/CDER

Creating Effective Visual Tools for the Assessment and Characterization of Pharmaceutical Product Safety: General Principles, Illustrations, and Public Access — Kenneth J. Koury, Merck Research Laboratories

Visualization Tools and the Evaluation of Safety Data in Pharmaceutical Industry Clinical Trials — Qi Jiang, Amgen Inc.

Visually Displaying Benefit:Risk:Uncertainty in Safety Assessments — Mark O. Walderhaug, U.S. Food and Drug Administration; Richard A. Forshee, U.S. Food and Drug Administration/CBER; Arianna Simonetti, U.S. Food and Drug Administration/CBER; Anne Fernando, Norfolk State University

Floor Discussion



Tutorial Topics

Modeling, Bayesian, Comparative Effectiveness and Safety Assessment of Pharmaceuticals

Short Courses

- 1. Targeted Maximum Likelihood Methods with Applications to Safety Data
 Speakers: Mark van der Laan, Susan Gruber, Sherri Rose
- Monte Carlo Clinical Trial Simulations for Pharmaceutical Industry: Concepts, Algorithms, Implementation and Case Studies

Speakers: Mark Chang, Sandeep Menon, Gheorghe Doros

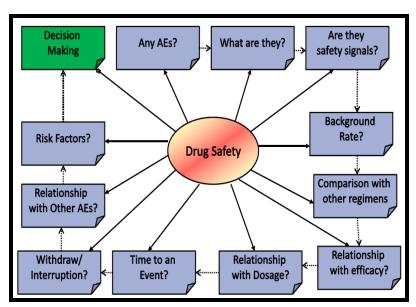
- 3. Advanced Safety Data Inalysis and Handling Nonrandom Missing Data Speakers: Russ worminger, Craig Malincrodt, Richard Zink
- 4. Sata Safety Mor toring Boards: Planning and Execution
 Speakers: Janet Wittes, Ruth McBride, April Slee, Matt Downs

In order to better assess drug safety, identify potential harms earlier than later, minimize risks to patients, and reduce late attrition due to safety issues – need to:

- Raise the bar on establishing acceptable safety profile of drugs
- Apply appropriate and/or develop formal statistical methodology to help identify signals and provide a better characterization of safety profile
- Monitor safety on both ongoing basis and also post-submission
- Make use of software tools that can help in safety profiling of drug
- Need more thorough safety analyses taking into account many considerations need to address a variety of questions

A safety analysis should provide information on safety profile of the drug, one that is reasonable or acceptable, show the drug has no safety concerns, at a minimum point out what risks are associated with the drug:

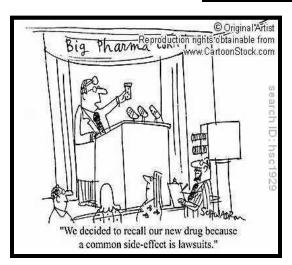
- •Under what circumstances they are important to the patient
- •The constellation of AEs that come with the drug
- •The incidence dose or exposure relationship
- •Relationship to concomitant medications
- •Identify any particular-prone patient subsets
- •Address any surprises in the data

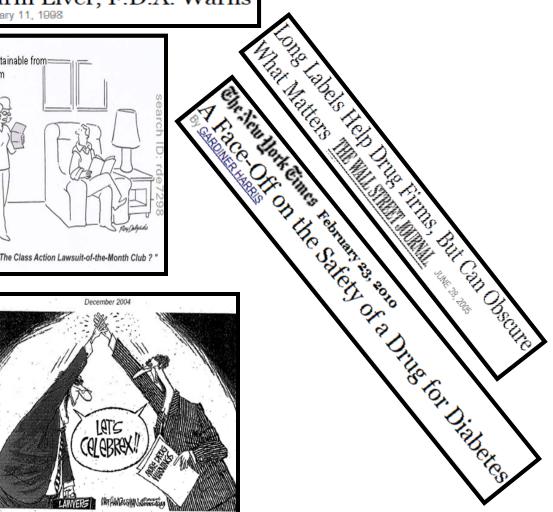


Source: Jiang and Huang, 2012

Otherwise...

The New York Times Painkiller Can Harm Liver, F.D.A. Warns February 11, 1998





Scope of Safety Data

Core: AE, lab data, vital signs, ECG

Other: PE, exposure, concomitant medications, concurrent disease, etc

About Safety data

- May not be appropriate to analyze via conventional statistical methods because many of the standard assumptions may not be fulfilled
- Typical clinical trial generally not sufficient to detect safety signals, unless study is specifically powered for safety zero observed events does not mean drug is safe
- Pathological features leading to asymmetric non-normal distributions, heterogeneous subpopulations, etc
- High variability in measurements
- Data are multidimensional and inter-related in nature
- Safety endpoints of concern may not be known prior to trial unexpected
- Large volume of output problems in generation, assessment, validation, assembly and last, and worst comprehension and communication of safety and challenging to interpret
- Simple descriptive summary tables and review of individual patient data
- Rarely analytical lots of exploration and estimation

Scope of Safety Data

AEs	Labs
 Often presented as counts but complicated by the large number of possible events and placebo response Large number of possible events means potential for false positives Analysis approaches challenging due to many zero counts on placebo treatment Subjective assessment of relation to drug and severity Possible relationships with other AEs AEs can occur in any body system 	 Abnormal laboratory data from clinical trials are considered precursors of potential organ dysfunction Multivariate, non-normal, correlated time series Typically assessed based on raw data or as categories via comparisons to normal ranges or custom cut-off points Missing data Different units Exact occurrence time for concerning values not known

Guidance on the Analysis of Safety Data

On AEs...

ICH-E3	FDA Clinical Review Template	CIOMS
•AEs occurring after initiation of study treatment, including changes in vital signs and any laboratory changes that were considered SAEs •Listing of AEs by Patient •Listing of Deaths, Other SAEs, and Other Significant AEs	 Incidence of common AEs Common AE tables Identify common and DRAEs Additional analyses and explorations - age, gender, etc Etc 	 Rates of AEs RR and OR Cls Time to Event Methods

Guidance on the Analysis of Safety Data

On Labs...

ICH-E3	FDA Clinical Review Template	CIOMS
 Listing of individual labs and abnormal lab values Evaluation of each lab parameter Laboratory values and changes from baseline over time (descriptive and categorical based abnormal values) Shift tables Graphs comparing initial value and on-treatment values Individually clinically significant abnormalities 	 Laboratory findings Analyses focused on measures of central tendency Analyses focused on outliers or shifts from normal to abnormal Marked outliers and dropouts for laboratory abnormalities Additional analyses and explorations - dose dependency, time dependency, and also drug-demographic, drug disease, and drug-drug interactions 	 Analyze lab data using ANCOVA with baseline value as covariate with observed value or change from baseline or maximum value (most severe value) Analyze binary values of lab data based on various cutoffs Graphical displays - scatter plots of baseline versus post- baseline

Thoughts on Safety Data

Tremmel (1996) – know type of AE you are looking at...

Event Type	Example	Question	
Absorbing	Death	Will I get it	
Absorbing	Blindness	When will get it	
Repeating	Seizure	How often will get it	
Repeating	Seizure	Will I develop tolerance	
Long Duration	Depressive Disorder	How much time	
Long Duration	Neutropenia	How much time	

And hence the measure or metric you should be looking at...

Measure of Risk for Absorbing Events	Measure of Risk for Recurrent Events of Short Duration	Measure of Risk for Recurrent Events of Long Duration
•Crude Incidence rate •Events per unit time •Survival rate (cumulative rate) •The hazard as a function of rime	 Number of events per unit time Expected number of events as a function of the hazard Hazard - simple AG Model Modeling the effect of preceding events Heterogeneity among subjects 	 Long Term Duration Prevalence Rates Markov Models Hazard - Simple Anderson-Gill Model Modeling the Effect of Preceding Events Heterogeneity Among Subjects

Thoughts on Safety Data

Use meaningful measures/metric of risk by AE type...

Type of Trial	Type of AE	Meaningful Measure
Short Term	All	Crude rate
Short Term	All	Cumulative rate
Long Term	Absorbing	Hazard function
Long Term	Recurring	Hazard function
Long Term	Long Duration	Prevalence

But exercise caution...for example,

- Exposure adjusted incidence rate and exposure adjusted event rate may be more appropriate
 measures to account for the potential difference in the duration of drug exposure or the follow-up
 time among individuals, and to capture the multiple occurrences of certain adverse events for a
 subject
- Also, when an event is (or is believed to be) likely to occur at any stage during continuous treatment
 with a drug then an event rate with a time component (e.g., rate per-person-year, etc) has a true
 meaning ...but
- If there are relatively rare idiosyncratic drug reactions that occur early in the treatment and in only a few individuals...further apart from a few with AEs, remaining patients who are prescribed drug will never get these AEs however long they use the drug

Events per person-time (incidence rate): A misleading statistic?

Helena Chmura Kraemer Statist. Med. (2009)

Events per person year—a dubious concept Jurgen Windeler, Stefan Lange BMJ, 1995

Thoughts on Safety Analysis

On the question of SOC vs HLT vs. PT?

- Pearson et al (2009) compared results of analyses using three different algorithms,
 when AEs are identified using PT vs. HLT vs SMQs
- Concluded that use of HLT and SMQ groupings prove better information safety

Influence of the MedDRA® hierarchy on pharmacovigilance data mining results

INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS 78 (2009) e97-e103

Ronald K. Pearson^a, Manfred Hauben^{b,c,d}, David I. Goldsmith^e, A. Lawrence Gould^f, David Madigan^g, Donald J. O'Hara^a, Stephanie J. Reisinger^a, Alan M. Hochberg^{a,*}

Another challenge in generating the most accurate and useful information is deciding what level of terminology (e.g., Lower Level or Preferred term from a coding dictionary) should be used in presenting AE data (for example, in summary tables).

The CIOMS VI Working Group suggests that AE data should generally be presented as Preferred Terms (e.g., from MedDRA®), organized within the relevant System Organ Classes (SOCs). However, due to the high granularity of MedLRA®, there may be several Preferred Terms describing different AE/ADR cases that involve the same medical concept within one SOC. Therefore, under some circumstances, it might be useful to include data at more than one level of the hierarchy within a SOC (e.g., High Level Terms (HLT) as well as Preferred Terms).

One approach to overcoming the various shortcomings discussed above has been undertaken by a separate CIOMS Working Group on "Standardized MedDRA® Queries (SMQs)." It has been operating for several years as a collaboration between senior

Thoughts on Safety Analysis – which one to use?

Chatfield

- The goal of statistical analysis is to present the data in such a way that most readers will believe the conclusion drawn
- The force of the conclusion is roughly inversely proportional to the complexity and number of methods used to exhibit it. The simplest techniques should be used

Cox

Most real-life statistical problems have one or more nonstandard features. There
are no routine statistical questions; only questionable statistical routines

Thoughts on Safety Analysis

Analysis Methods

Widely Used	Not So Widely Used
 AEs Descriptive Fisher Exact Test Odds Ratio Risk ratio Risk Difference Time-to-Event Chi-Square Mantel-Haenszel Simple Graphical Methods 	•Competing risks •Recurrent Events •Bayesian Methods •Multivariate Methods •Advanced Graphical Methods •Multistate Models •Disease State Models •Meta Analysis •Etc
Lab Data •Descriptive •Shift Tables •Analysis of 'Outliers' •Time-to-Event •Fishers exact test •Chi-Square •Mantel-Haenszel •Simple Graphical Methods	 Recurrent Events Bayesian methods Multivariate Methods - cluster analysis, etc Modeling Advanced Graphical Methods Meta Analysis

Much has been written on the use of graphs for safety data...

Graphical Approaches to the Analysis of Safety Data from Clinical Trials

PHARMACEUTICAL STATISTICS Pharmaceut. Statist. 2008; 7: 20–35

Ohad Amit1, Richard M. Heiberger2, and Peter W. Lane3,*,†

Graphical Analyses of Clinical Trial Safetv Data Haijun Ma, Kefei Zhou, Amy Xia, Matt Austin, George Li,

Michael O'Connell
08/10/07, GBE Scientific Forum

GRAPHICAL DISPLAY OF DATA – A NONPARAMETRIC APPROACH

Shi-Tao Yeh NESUG17, 2004 Visualising Adverse Events in 3D

Tim Palmer, Jaya Ramakrishnanirch Phuse 2006 Paper CS05

USING RADAR CHART TO DISPLAY CLINICAL DATA

Shi-Tao Yeh NESUG18, 2005 Spotting clinical safety signals earlier: the power of graphical display Michael Merz

Clinical Adverse Events Data Analysis and Visualization

Shi-Tao Yeh PharmaSUG, 2007 Exploratory Analysis of Clinical Safety Data to Detect Safety Signals Frank E Harrell Jr

Clinical Graphs using ODS Graphics — Analysis of Safety Data for Clinical Trials Jan René Larsen Phuse 2010

Event Charts for the Analysis of Adverse Events in Longitudinal Studies: An Example from a Smoking Cessation Pharmacotherapy Trial Joel A. Dubin^{3,1} and Stephanie S. O'Malley² The Open Epidemiology Journal, 2010, 3, 3441

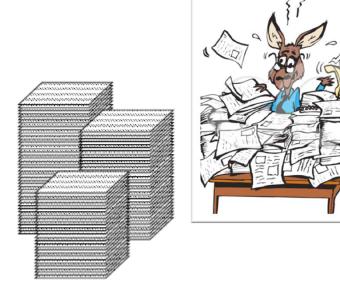
Decision Making and Safety in Clinical Trials – Graphs make a Difference! Susan P Duke, 2011 What Happened to All the Patients? Event Charts for Summarizing Individual Patient Data and Displaying Clinically Significant Changes in Quality of Life Data

- Useful for exploring data
- Aid in inference and communicating results
- Display large data coherently
- Maximize ability to detect unusual features or patterns
- Can help facilitate communication with regulators, investigators, DMC, etc.
- Present a great opportunity to enhance evaluation of drug safety
- Can convey multiple pieces of information concisely and more effectively than tables
- Combine multiple data
- Utilizing graphical exploration can substantially improve information gain from safety data, e.g.,
 - Which AEs are elevated in treatment vs. placebo?
 - Any special patterns of AE onset?
 - What is the trend of treatment effects on safety outcomes over time?
 - Which patients have abrupt changes in lab tests? Is there temporal causality of drug intake?
 - Group level information display
 - Individual level information display and drill down
- Graphs are not complete solution should be used with other analyses
- Much information on graphs becoming publicly available, e.g., CTSpedia website -

www.ctspedia.org

Harrell (2005)

- Graphs, Not Tables! (But really you also need tables)
 - Have pity on statistical and medical reviewers
 - Difficult to see patterns in tables
 - Substituting graphs for tables increases efficiency of review

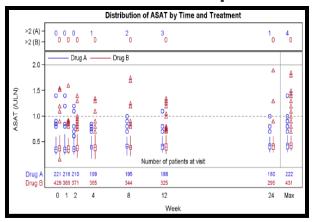


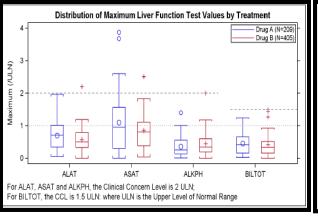
A Statistical Perspective on Adverse Event Reporting in Clinical Trials

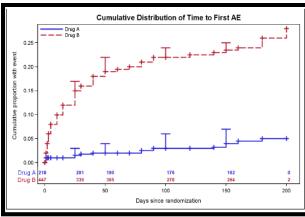
lanet Wittes Biopharm Report, Fall 1996

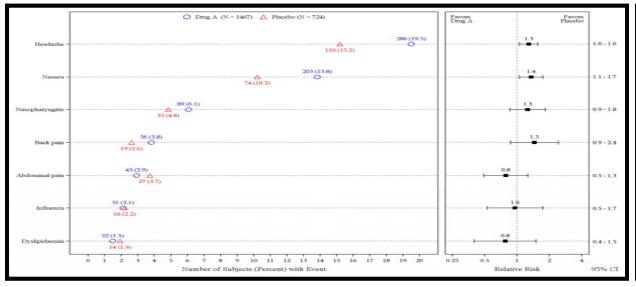
A plethora of tables and graphs that describe safety may bury some true signal in a cacophony of numbers.

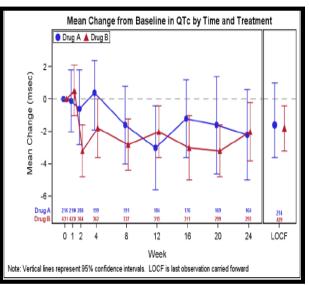
Main Stream Graphs in the Analysis of Safety Data

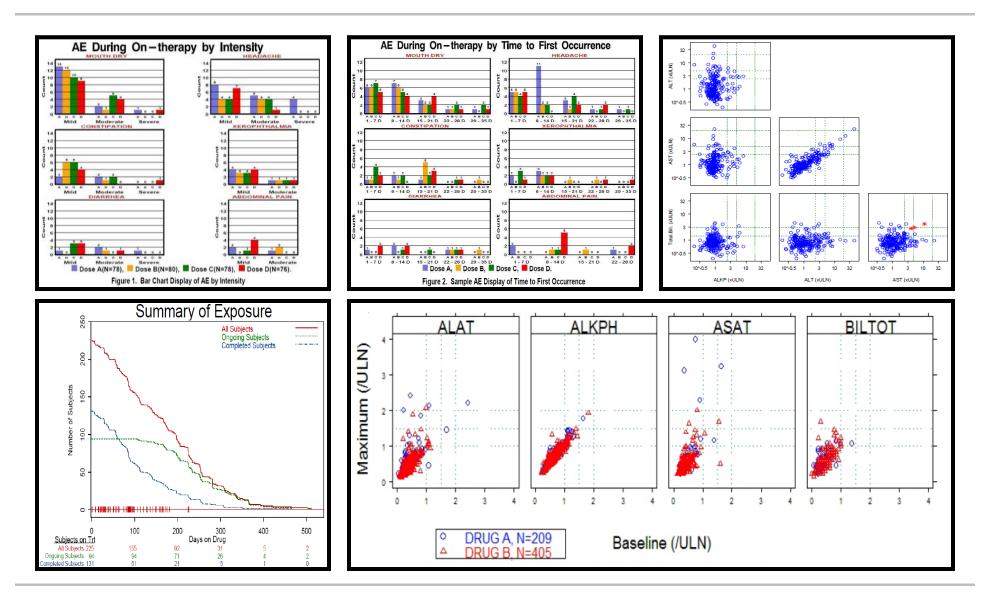


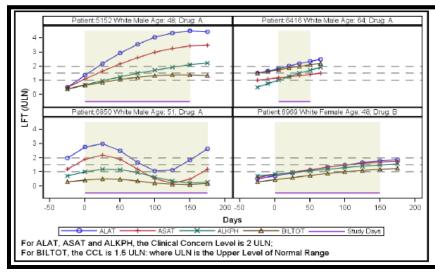


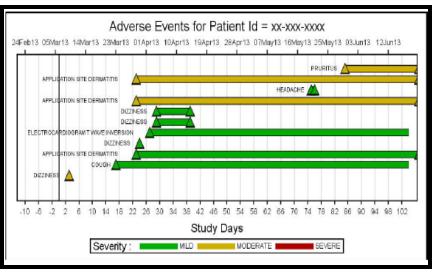


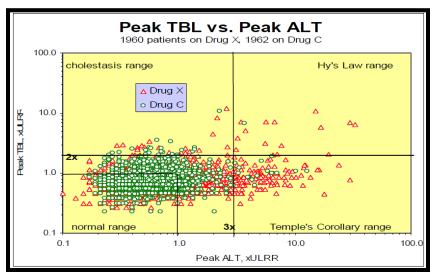


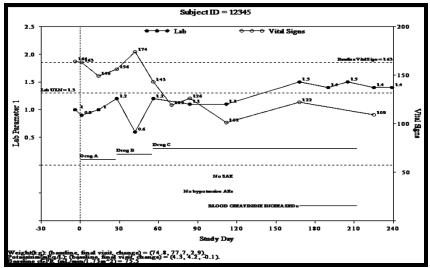




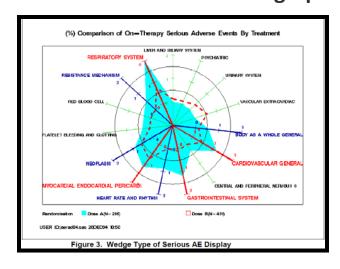


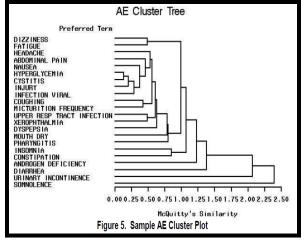


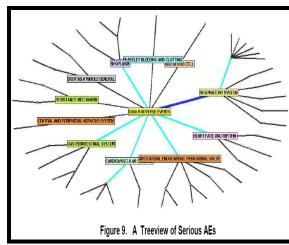


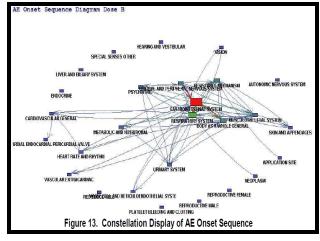


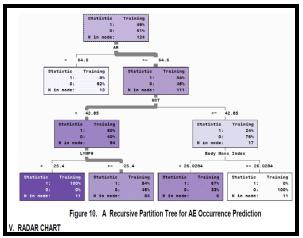
Not so main stream graphs in the analysis of safety data











Analysis Approaches – Formal Analysis

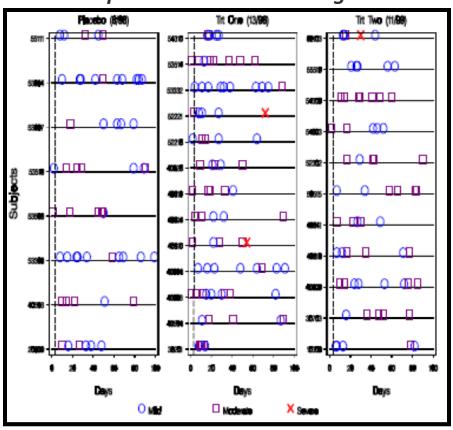
- Many formal methodological approaches have been discussed for safety data
- Common inferential analyses are those noted earlier, including Fisher's Exact test, KM time-to-event analysis, etc
- Typically formal analyses focused on some specific concern
- Variety of methods proposed to address various questions
- But for the most part, safety analyses still based on crude rate and sometimes on exposure adjusted analyses
- Crude rate total number of people treated divided by the number of people who experience AE
 - Crude rate index has several disadvantages for example, it ignores frequency of adverse events and factors which may affect the occurrence of adverse events

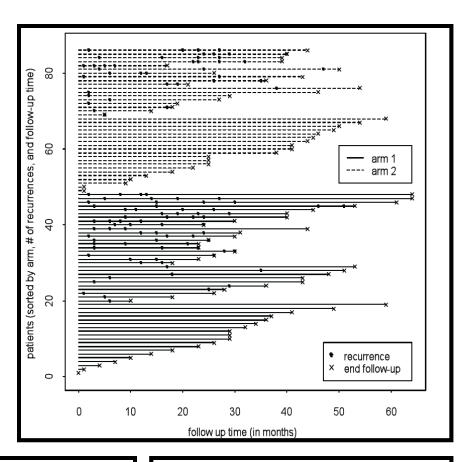
- When analyzing time to event for safety data, typically use:
 - The Kaplan-Meier (KM) method: estimate the survival function
 - The Nelson-Aalen method estimate the cumulative hazard function
 - Cox proportional hazards models evaluate effects of explanatory variables on hazard ratio
- Problem All these methods usually focus on time to the first AE, and they
 are not appropriate for recurrent data which is a typical characteristic of
 AEs or other characteristics of data Tremmel (1996)

DEFINING, MONITORING AND COMBINING SAFETY INFORMATION IN CLINICAL TRIALS Gregory G. Enas¹, David J. Goldstein²
Statistics in Medicine 1995 Volume 14, Issue 9,1099–1111

Also, when evaluating overall safety, one needs to assess all available information by combining information from many trials and other sources

For example AEs can be recurring



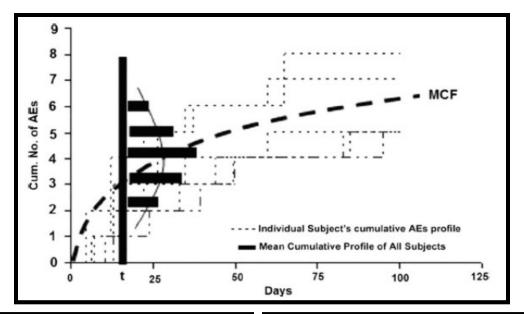


An Useful Chart to Display Adverse Event Occurrences in Clinical Trials
Chuanchieh Hsu Zhongwei Zhou, J. Michael Hardin SUGI 27 Paper 119-27

Visualization of Titrated Dose and recurrent Events
Using R/ggplot2
Yue Shentu 2010

Event Charts for the Analysis of Adverse Events in Longitudinal Studies: An Example from a Smoking Cessation Pharmacotherapy Trial Joel A. Dubin^{*,1} and Stephanie S. O'Malley² The Open Epidemiology Journal, 2010, 3, 34-41

- Need to use alternative approaches similar to those for first event, but which take into account recurring nature of AEs
- Use Mean Cumulative function and regression models for recurrent data Nelson (2003)
- Implemented in SAS Proc Reliability (can also get in Proc Phreg)



STATISTICAL METHODS TO ANALYZE ADVERSE EVENTS DATA OF RANDOMIZED CLINICAL TRIALS Journal of Biopharmaceutical Statistics, 19: 889–899, 2009 Ohidul Siddiqui Statistical Analysis of Adverse Events in Randomized Clinical Trials
Using SAS Dongsun Cao, Xiaomin He Pharmasug2011 - Paper SP07

Regression models for recurrent data

- Consider a recurrent event process starting at t = 0, let T₁ < T₂ ···
 denote the event times, where T_k denotes the time of the kth event.
- Let $N(t) = \sum_{k} I(T_k \le t)$ denote the cumulative number of events occurring over the time interval [0, t].
- Let $H(t) = \{N(s) : 0 \le s \le t\}$ denote the history of the process at time t.
- For a short time interval $[t, t + \Delta t)$, the instantaneous probability of an event occurring at t, conditional on the process history, is given by the intensity function,

$$\lambda(t \mid H(t)) = \lim_{\Delta t \to 0} \frac{Pr\{N(t + \Delta t) - N(t) = 1 \mid H(t)\}}{\Delta t}$$

- Unconditional Models: the events are "incidental" that their occurrence does not alter the process itself.
- Examples include mild epileptic seizures or asthmatic attacks.
- A Poisson process can be used to describe the number of events in time (s, t], which is defined as N(s, t):
 - \rightarrow 1. N(s,t) has a Poisson distribution.
 - \rightarrow 2. If $(s_1, t_1]$ and $(s_2, t_2]$ are nonoverlapping intervals, then $N(s_1, t_1)$ is independent of $N(s_2, t_2)$.
- The intensity function is given by $\lambda(t \mid H(t)) = \rho(t)$: the probability of an event in $(t, t + \Delta t]$ may depend on t but is independent of H(t).
- The process is homogeneous if $\rho(t) = \rho$ is a constant; otherwise it is nonhomogeneous.

On reporting results from randomized controlled trials with

recurrent events BMC Medical Research Methodology 2008, 8:35

Lisa Kuramoto*1, Boris G Sobolev² and Meghan G Donaldson³

- Let x_i denote the indicator for treatment, and let λ_o denote the baseline intensity.
- Poisson model:

$$\lambda_i = \lambda_o \exp(\beta x_i)$$

- This model assumes λ_i is a constant over time, and it does not depend on either the event history or time t.
 - Independent-Increment model:

$$\lambda_i(t) = Y_i(t)\lambda_o(t) \exp(\beta x_i),$$

where $Y_i(t) = \begin{cases} 1 & \text{if subject i is under observation at time t} \\ 0 & \text{if subject i is censored by time t} \end{cases}$

• $\lambda_o(t)$ is the baseline rate function that can vary over time, but is independent of the event history.

Gamma-Poisson model:

$$\lambda_i = \mu_i \lambda_o \exp(\beta x_i).$$

• Independent-Increment frailty model:

$$\lambda_i(t) = Y_i(t)\mu_i\lambda_o(t)\exp(\beta x_i).$$

• Here, μ_i is a frailty parameter that measures heterogeneity of the subjects and allows for overdispersion. A convenient choice for μ_i is gamma distribution,

$$f(\mu) = \frac{\mu^{1/\theta - 1} \exp(-\mu/\theta)}{\Gamma(1/\theta)\theta^{1/\theta}}.$$

 Under the assumption of time homogeneous models, the marginal distribution of the total number of events is negative binomial.

- Conditional Models: the events may substantially affect the event process in the future.
- Examples include myocardial infarction and stroke in cardiovascular studies.
- Conditional model:

$$\lambda_{ij}(t-T_{N(t^-)})=Y_{ij}(t)\lambda_{oj}(t-T_{N(t^-)})\exp(\beta x_i),$$

where $T_{N(t^-)}$ is the time of the event just prior to time t.

- $Y_{ij}(t) = \begin{cases} 1 & \text{if } (j-1)\text{th event occurred by time } t \text{ and } j\text{th event has not} \\ 0 & \text{if otherwise or censored at time } t \end{cases}$
- Thus a subject is considered at risk at time t only if the previous event occurred before that time, and if he is under observation.
- The intensity function depends on both time t and the event history.

• Simulated data

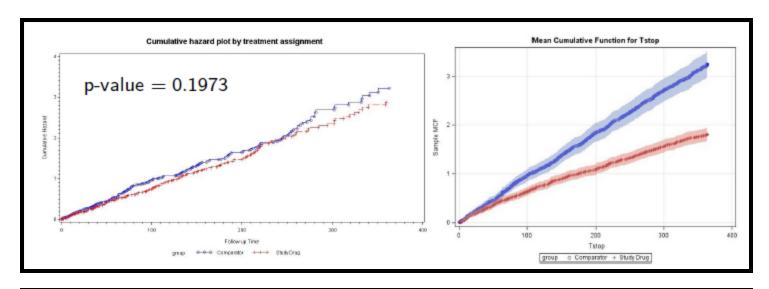


Table: Effect of treatment on adverse events				
Model	Parameter	p value	Hazard Ratio	95% CI
Cox	-0.1179	0.1986	0.889	(0.742, 1.064)
Poisson	-0.4154	< 0.0001	0.660	(0.600, 0.726)
Gamma-Poisson	-0.2665	< 0.0001	0.766	(0.682, 0.860)
Independent-increment	-0.5880	< 0.0001	0.555	(0.495, 0.623)
Conditional	-0.5255	< 0.0001	0.585	(0.524, 0.654)

Analysis Approaches – Bayesian Methods

Bayesian Analysis Approach...

"Safety assessment is one area where frequentist strategies have been less applicable. Perhaps Bayesian approaches in this area have more promise." (Pharmaceutical Report, 2002) – G.Chi, H.M. Hung, R. O"Neill

BAYESIAN HIERARCHICAL MODELING FOR DETECTING SAFETY SIGNALS IN CLINICAL TRIALS

Journal of Biopharmaceutical Statistics, 21: 1006-1029, 2011

H. Amy Xia¹, Haijun Ma¹, and Bradley P. Carlin²

Bayesian Modeling with S-PLUS® and the S+flexBayes Library
Andrew Jack, Dawn Woodard, Joel Hoffman, Michael O'Connell PhUSE 2007

Detecting Potential Safety Issues in Clinical Trials by Bayesian Screening

Biometrical Journal 50 (2008) 5, 837-851

A. Lawrence Gould*

Bayesian Applications in Drug Safety Evaluation Amy Xia, 2010

A Bayesian Modeling Approach for Safety Data Analysis in Drug Development Y. Gu, K. Zhang, and L. Yang, 2010

BayesWeb: A USER-FRIENDLY PLATFORM FOR EXPLORATORY BAYESIAN ANALYSIS OF SAFETY SIGNALS FROM SMALL CLINICAL TRIALS

Journal of Biopharmaceutical Statistics, 21: 1030–1041, 2011

John A. Scott¹, Austin L. Hand^{1,2}, and Layla S. Sian³

Multivariate Bayesian Logistic Regression for Analysis of Clinical Study Safety

Ssues¹ William DuMouchel Statistical Science 2012, Vol. 27, No. 3, 319–339

Safety analysis using Bayesian simulation methods in SAS® 9.2 Armin Gemperli
Pharmaceutical Programming 2010

Bayesian Hierarchical Models for Detecting Safety Signals in Clinical Trials

Applied Bayesian Approaches in Safety and Pharmacovigilance Andy Grieve 2011

Why use a Bayesian approaches?

- Offers many advantages in monitoring or analyzing safety data
- Can handle multiplicity question
- Ability to incorporate prior information
- Provides a single, coherent framework in which diverse elements of the data can be modeled
- Does not rely on asymptotic properties in dealing with rare events
- Straightforward and flexible to assess clinically important differences
- Can be as simple as performing a simple Bayesian computation applied to safety data – see for example Scott (2011 and http://bayesweb.com/)
- Can also be used in the modeling and prediction

• Berry and Berry Model (2004)

B body systems

k, adverse effects within body system i

For
$$AE_{ij}$$
, $i = 1, ..., B$, $j = 1, ..., k_i$

Control: x_{ii} events in n_C patients

Treatment: y_{ii} events in n_T patients

H_0 : $c_{ii} = t_{ii}$, where $c_{ii} \& t_{ii}$ are event rates

$$logit(c_{ij}) = \gamma_{ij}$$

$$logit(t_{ij}) = \gamma_{ij} + \theta_{ij}$$

 θ_{ii} are log odds ratios

 θ_{ii} = 0 => Pr(subject has AE_{ii}) is same for trt and ctl

$$\gamma_{ij} \sim N(\mu_{\gamma i}, \sigma_{\gamma}^{2})$$

Source: McConnell (2004)

$$\theta_{ij} \sim \pi_i \ I\{0\} + (1-\pi_i) N(\mu_{\theta i}, \ \sigma_{\theta i}^{2})$$

π_{i} is probability that the treatment has no effect on an AE in body system i

$$\pi_{i} \sim \text{Beta}(a_{\pi}, b_{\pi}), i = 1, ..., B$$

Priors on a_{π} , b_{π} are chosen to be symmetric

=> Prior
$$Pr(\theta_{ii}=0)$$
 = prior $Pr(no trt effect on AE_{ii}) = 0.5$

=> Addresses multiple comparisons issue directly

$$\mu_{\text{vi}},\,\sigma_{\text{v}}^{\,\,2}\,\mu_{\text{\thetai}},\,\sigma_{\text{\thetai}}^{\,\,2}\,\pi_{\text{i}}$$
 are same for PTs within SOCs

=> Borrow strength within SOCs

 μ_{vi} , $\mu_{\theta i}$, π_{i} are modeled as random effects

=> Borrow strength across SOCs

• Sample Results

Table 3

Two-sided Fisher-exact-test p-values compared with the probability of a treatment effect $p(\theta > 0)$ from a "one-stage" solo Bayesian model (see text) and from the three-stage hierarchical model

Type of	Fisher $2p$	Solo	Hierarchical
adverse event		Bayesian	Bayesian
Diarrhea Irritability Rash Rash, measles/ rubella-like	0.029	0.885	0.231
	0.003	0.984	0.780
	0.021	0.923	0.190
	0.039	0.889	0.126

• Code available in SAS, Splus, and R for Berry and Berry Model

Gu, Zhang, and Yang Model (2010)

- Bayesian logistic mixed-effect model to analyze safety data
- Like Berry model, SOC is considered in the model so information within the same SOC can be borrowed to help model AE rate
- Risk factors can be easily added in the model
 logit(p)=Treatment + SOC + AE+ Interaction Terms +
 Other Covariates
 - o p= AE rate
 - prior information will be specified on the coefficients
 - posterior of p = prior * likelihood of observed data
 - o Pr(RR> threshold | observed data)=?
 - posterior predictive distribution of Y=posterior of p * likelihood of Y

- For AE_{bi}
- -- X_{bj}: number of reported AEs among N_c
 patients in control arm
- -- Y_{bj}: number of reported AEs among N_t
 patients in treatment arm

where SOC b=1,2,..., B, AE j=1,..., n1

- Suppose X_{bj} ~ Binomial (Nc, c_{bj}) Y_{bj} ~ Binomial (Nt, t_{bj})
- Where c_{bj} and t_{bj} are the event rates in control and treatment arms, respectively
- Mixed effect model with interaction

Model is

where p= X_{bj} /Nc or Y_{bj} /Nt, β_{2b} ~N(0, σ_2 ²), β_{3j} ~N(0, σ_3 ²), β_{4b} ~N(0, σ_4 ²), β_{5j} ~N(0, σ_5 ²), priors on β_0 , β_1 , σ_2 ², σ_3 ², σ_4 ², σ_5 ²

Slide from authors

- Criteria of flagging AE are based on the posterior probability of the question with clinical meaning
- Any clinical questions that can be expressed in the function of AE rates can be answered directly
 - What is the Pr(RR >1 | Data)?
 - What is the Pr(Difference of AE rates > 10% | Data)?
 - What is the Pr(RR>1 and AE rates in both treatment and control arms > 5% | Data)?

AE	Fisher exact test (p-value)	Post prob of θ>0	Post prob of RR>1
Diarrhea	0.029	0.231	0.991
Irritablility	0.003	0.780	1.000
Rash	0.021	0.190	0.994
Rash, measles/rubella-like	0.039	0.126	0.994

Analysis Approaches – Formal Analysis

Some considerations/thoughts

Meta-analysis of rare and adverse

event data Expert Rev. Pharmacoeconomics Outcomes Res. 2(4), 367–379 (2002)

Meta-Analysis of Rare Binary Adverse Event Data

Dulal K. BHAUMIK, et al. JASA 2012

Meta-analysis of incidence

of rare events Peter W. Lane

Statistical Methods in Medical Research 2011

Meta-analyses of safety data: a comparison of exact

versus asymptotic methods Statistical Methods in Medical Research 2009: 18: 421–432

Ben Vandermeer, et al

Multivariate time-to-event analysis of multiple adverse events

of drugs in integrated analyses Achim Güttner^{1,*,†}, Jürgen Kübler^{1,‡} and Iris Pigeot^{2,3,§} Statist. Med. 2007: 26:1518-1531

An Approach to Integrated Safety Analyses

From Clinical Studies

Gerd K. Rosenkranz Drug Information Journal, Vol. 44, pp. 649-657, 2010

Rare AE or no AE

- AEs of Special Interest
- Multiplicity
- **Meta Analysis**
- **Integrated analysis**
- Safety Pharmacology

of the incidence of adverse events in clinical trials

Filip De Ridder¹, An Vermeulen², Vladimir Piotrovskii²

Pharmacokinetic-Pharmacodynamic Modelling of Adverse Effects of Nitrendipine I. Locatelli, et al. 2003

Estimating With Confidence the Risk of Rare Adverse Events, Including Those With Observed Rates of Zero A. M-H. et al,

Calculating the probability of rare events: why settle for an

approximation?

Health Services Research 1993

Planning for the Identification, Data Collection, and Integration of Adverse Events of Special Interest (AESI)
Manfred Oster, MD DIAPDAPPARMA Drug Safety Conference, October 14-15, 2008

Applying SMQs to Adverse Event Data John van Bemmelen, PhUSE 2008 Paper TU05

Current State of Special Safety **Analyses for Clinical Trials** Miganush Stepanians, 2008

Use of the false discovery rate for evaluating clinical safety data Devan V Mehrotra and Joseph F Heyse

Statistical Methods in Medical Research 2004; 13: 227–238

Accounting for Multiplicities in Assessing Drug Safety: A Three-Level Hierarchical Mixture Model Scott M. Berry and Donald A. Berry BIOMETRICS 60, 418-426 2004

Analysis Approaches – Formal Analysis

Specific to AEs...

Analysis of adverse events in titration studies Inference 96 (2001) 129-142

C. Thomas Lin^{a,*}, Balakrishna S. Hosmane^b, Peggy J. Olson^a Robert J. Padlev^c

Non-parametric inference of adverse events under informative censoring

Masako Nishikawa^{1,*,†}, Toshiro Tango¹ and Makiko Ogawa² Med 2006: 25:309

Estimating Late Adverse Events using Competing Risks after Autologous Stem-Cell Transplantation in Aggressive Non-Hodgkin Lymphoma Patients

An Answer to Multiple Problems with Analysis of Data on Harms? Statistical Science 2012, No. 37, No. 347

Stephen Evans

Mixed-effects Poisson regression analysis of adverse event reports: The relationship between antidepressants and suicide R. Gibbons, et al Statist. Med. 2008; 27:1814-1833

Incidence and Patterns of Adverse Event Onset During the First 60 Days After Ventricular Assist

Device Implantation E. A. Genovese, et al Ann Thorac Surg 2009;58:1162-70

Evaluate multiple adverse events in crossover design bioequivalence clinical trials

Acta Pharmacci Sin 2001 Feb; 22 (2): 187-192 WANG Yong¹, LI Lin-Xian², WANG Zi-Can², WANG Yue-He³

An Approach to Integrated Safety Analyses From Clinical Studies

Gerd K. Rosenkranz Drug Information Journal, Vol. 44, pp. 649-657, 2010

A Two-Part Mixture Model for Longitudinal Adverse Frent Severity Data

ournal of Phar vacokinetics and Pharmacodynamics, Vol. 30, No. 5, October 2003. Kenneth G. Kovalski, 1,4 Lynn McFadyen, 2 Matthew M. Autmacher, 3 Bill rame, and Raymond Miller

Multivariate tests comparing binomial probabilities, with application to safety studies for drugs

Alan Agresti and Bernhard Klingenberg Appl. Statist, 1985, 54, Part 4, pp. 691-706

Modelling the Time to Onset of Adverse Reactions with Parametric Survival Distributions

A Potential Approach to Signal Detection and Evaluation Manfred Hauben

Methods of competing risks analysis of end-stage renal disease and mortality among people with Hyun J Lim^{1*}, Xu Zhang², Roland Dyck³, Nathaniel Osgood diabetes

BMC Medical Research Methodology 2010, 10:97

Analysis of Adverse Events in the Presence of Discontinuati
Gerd Rosenkranz
Drug Info. pation Journal, Vol. 40.

Nonparametric estimation for cumulative duration of adverse events Jixan Wang*, and George Quartey Biometrical Journal 54 (2012) 1, 61-7

STATISTICAL METHODS TO ANALYZE ADVERSE EVENTS DATA OF RANDOMIZED CLINICAL TRIALS

Journal of Biopharmaceutical Statistics, 19: 889-899, 2009

Ohidul Siddiqui

Multivariate time-to-event analysis of multiple adverse events of drugs in integrated analyses

Statist. Med. 2007; 26:1518-1531 Achim Güttner^{1,*,†}, Jürgen Kübler^{1,‡} and Iris Pigeot^{2,3,§} Robert Goldberg-Alberts, Sam Page

Statistical approaches to establishing vacsine safety Vladimi Dragalin^{1,*,†} Valerii Fedorov¹ Brigitte cheuvart² STATISTICS IN MEDICINE Signs, Med. 2002; 21:877–893

Reporting cumulative proportion of subjects with an adverse event based on data from multiple studies Christy Chuang-Stein,* and Mohan Beltangady Rethinking Statistical Approaches to Evaluating Drug Safety Jen-pei Liu^{1,2} Yonsei Med J 48(6):895 - 900, 2007

Mixed-effects Poisson regression analysis of adverse event reports: The relationship between antidepressants and suicide Robert D. Gibbons 1,: et al Statist, Med. 2008; 27:1814-1833

Analysis Approaches – Formal Analysis

Specific to lab data...

DETECTING OUTLIERS IN MULTIVARIATE LABORATORY DATA

Journal of Biophary aceutical Statistics, 18: 1178–1183, 2008 Harry Southworth

A comparison of multivariate outlier detection methods for clinical laboratory safety data

Kay I. Penny and Ian T. Jolliffe The Statistician (2001) 51, Part 3, pp. 295-308

MULTIVARIATE OUTLIER DETECTION APPLIED TO MULTIPLY IMPUTED LABORATORY DATA

KAY I. PENNY1* AND IAN T. JOLLIFFE2 Statist. Med. 18, 1879-1895 (1999)

Extreme value modelling of laboratory safety data from clinical studies

Harry Southwortha* and Janet E. Heffernanb Pharmaceut. Statist. 2012

Assessing a vector of clinical observations

Morris L. Eator⁴, Robb J. Muirhead^b, Eve H. Pickering^c Journal of Statistical Planning and Inference 136 (2006) 3383–3414

Multivariate statistical interpretation of laboratory clinical data

Agelos Papaioanno 1*, Vasili Simeopov², Panagiotis Plageras¹,
Eleni Doviki¹ and Thomas Spanos³
Central European Journal of Medicine 2007 319-334

Modeling laboratory data from clinical trials

Gerd K. Rosenkranz, Computational Statistics and Data Analysis 53 (2009) 812-819

Analysis of longitudinal laboratory data in the presence of common selection mechanisms: A view toward greater emphasis on pre-marketing pharmaceutical safety

Jonathan S. Schildcrout^{1,*,†}, Cathy A. Jenkins¹, Jack H. Ostroff², Daniel L. Gillen³,

Frank E. Harrell¹ and Donald C. Trost² Statist. Med. (2007)

Vector Analysis to Detect Hepatotoxicity Signals in

Drug Development

Donald C. Trost, Junes W. Freston, Drug Information Journal, Vol. 42, p. 27-34, 2008

Dissimilarity Measures for Detecting Hepatotoxicity in Clinical Trial Data*

Matthew Eric Otey Srinivasan Parthasarathy D nald C. Trost

Multivariate Probability-Based Detection of Drug-Induced Hepatic Signals Donald C. Trost Tolked Rev 2008: 25 (1): 37-54

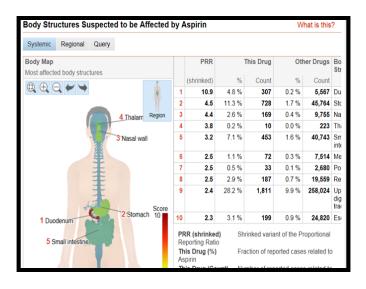
Bayesian modelling of the dynamics of hepatotoxicity Q. Li¹, X. Shen²,*,† and D. K. Pearl¹ Statist. Med. 2007; **26**:3591–3611

Analysis Approaches – Final Thoughts

• The future of safety data analysis...?? Combine tables analysis and graphs...

Using Avatars to Understand Adverse Drug Reactions

POSTED BY: ROBERT CHARETTE / TUE, MARCH 06, 2012



http://drugsafety.nhumi.com/drugsafety/

Closing Remarks

- There is room to improve safety reporting
- Need to make safety analysis more formal..also race for safety
- Plan safety analyses similar to efficacy analyses
- Consider using the various formal analyses methods that have been discussed in the literature and use graphs
- Methods used should be well thought prior to use
- Need to make more use of graphs to help enhance safety reporting
- Heed recommendations from Safety Planning, Evaluation, and Reporting Team

Some things that I have learned!

• Try to understand where the other person is coming from...know the science as much you can

What do we really know about safety?

Donald Rumsfeld on Knowledge

As we know,
There are known knowns.
There are things we know we know.

We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

But there are also unknown unknowns, The ones we don't know We don't know.

Feb. 12, 2002, Department of Defense news briefing

Slide from J. Hung

Thank You!

Acknowledgements

Aimee Cyr (Takeda)
Tao Zhang (U of Iowa)
Linyun Zhou (Takeda)
Yue Shentu (Merck)
Joel Dubin (U of Waterloo)

??Questions??

References

Plenty! – see references noted in the 'boxes' in the slide deck